
Journal of Engineering Mathematics, Vol. 5, No. 4, October 1971 
Wolters-Noordhoff Publishing-- Groningen 
Printed in the Netherlands 

307 

Approximate Equations for the Flexure of Thin, Incomplete, 
Piezoelectric Bimorphs 
D. H. K E U N I N G  

(Dep~m. of Mathematics, University of Groningen, P.O. Box 800, Groningen, The Netherlands) 

(Received February 8, 1971) 

S U M M A R Y  

In this paper the linear, three-dimensional, piezoelectric equations for a body in equilibrium are reduced to approxi- 
mate, two-dimensional ones, treating the flexure of thin bimorphs, partly coated by electrodes (incomplete bimorphs). 
For that purpose two-dimensional equations are derived for piezoelectric plates and for bimorphs with completely 
coated faces. An assumption about the charge distribution on the inner electrode is given, stating that the charge 
vanishes on those parts where the outer faces are free of electrodes. This assumption allows the application of the 
mentioned, approximate equations for plates and bimorphs to the parts of incomplete bimorphs. By stating edge and 
continuity conditions, the approximate theory ls completed. The solution for a circular, incomplete, piezoceramic 
bimorph, loaded by a singular force in the centre, is given and compared with experimental results. 

1. Introduction 

A bimorph is a bilaminar disk, which can convert mechanical energy into electrical energy 
and vice versa. The bimorph considered here, consists of two piezoelectric plates, glued to 
each other with in between an infinitesimally thin electrode. The crystallographic axes of both 
plates have the same orientation. The outside faces are partly coated by shorted electrodes of 
identical shape, situated symmetrically with respect to the central electrode (fig. 1). The part 
of the bimorph covered by electrodes is denoted by region I and the remaining part by region II. 
We assume that the smallest lateral dimension of both regions are large with respect to the 
thickness 2 h. In the remainder these bimorphs are called incomplete bimorphs, to distinguish 
them from the ordinary bimorphs with completely coated faces (complete bimorphs). 

- - I - - ?  I * 
2h --II : I- 

Figure 1. Cross section of the incomplete bimorph. 

Piezoelectricity is a reversible, electro-mechanical phenomenon. In materials exhibiting this 
effect, stresses and strains occur when an electric field is applied and inversely, mechanical 
stresses produce electric polarization and hence an electric field. The piezoelectric phenomenon 
is described in many books, for instance [1], [2] and [3]. 

The bilaminar disks under consideration can be bent by transverse mechanical loads in the 
usual manner and by electrical charges on the electrodes. In the latter case one piezoelectric 
plate expands and the other one contracts. Since slipping is prevented, bending occurs. In this 
way bimorphs, vibrating in the quasistatic range of frequencies, are used in acoustical appli- 
cations, such as loudspeakers, microphones and phonograph pick-ups. 

In order to describe the behaviour of these quasistatic vibrations, the linear, three-dimensional 
piezoelectric relations for a generally anisotropic, homogeneous, piezoelectric body are re- 
duced to approximate, two-dimensional ones, treating the static flexure of thin, incomplete 
bimorphs in vacuum. In the remainder we assume that the charge on the central electrode is 
only distributed on the part situated in region I. Hence the charge distribution on this electrode 
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is neglected in region II. This assumption is suggested by the fact that in case a charged, half- 
infinite electrode is situated on a constant distance h from an infinite, earthed one and the 
electrodes are placed in vacuum, the charge distribution on the infinite electrode vanishes in 
every fixed point of the protruding part as h---,0 ([4]). 

In virtue of the assumption introduced above, approximate equations can be stated for 
part I, being a complete bimorph, and part II. They are based on some assumptions which 
are derived from the exact solution for an unbounded bimorph, respectively plate. The two- 
dimensional theory for incomplete bimorphs is completed by giving appropriate conditions 
of continuity on the common boundary of the regions I and II and the edge conditions. 

Finally the solution for a circular, piezoceramic, incomplete bimorph is given and experi- 
mental data are added. These results are in agreement with the theoretical solution. 

2. Basic Equations 

The points in the three-dimensional Euclidian space L(3) are referred to a set of coordinates 
0 i, i=  1, 2, 3, in the usual manner. Unless specified, the coordinate lines are curvilinear. 

The general equations are given in tensor notation. A summary of tensor calculus is given in 
[5] and [6]. A comma followed by an index i denotes ordinary differentiation with respect to 
0 i and a vertical line followed by an index covariant differentiation. Also the summation 
convention for repeated indices is employed. Latin indices range over 1, 2 and 3 and Greek 
indices over 1 and 2. 

With respect to m.k.s, units we have the following, linear, three-dimensional relations for a 
piezoelectric body in equilibrium. 

i) The piezoelectric equations; of the four equivalent sets of equations describing piezo- 
electricity two will be adopted, 

T ij = Ec i j k ISk l - -  ek iJEk  , D i = eik tSkl  q- s ~ i k E k  , (2.1.a) 

and Sij = eSijRZ T k~ + d ! o E k ,  D i = dlk~ T k~ + Te~kEk . (2.1.b) 

ii) The equations of equilibrium, 

TiJ[, = 0. (2.2) 

iii) The strain displacement relations, 

= �89 + (2.3) 

iv) The Maxwell equations of electrostatics, 

Ei = - Vi  , (2.4.a) 
Dili= 0.  (2.4.b) 

Body-forces, body-couples and surface-couples are neglected as usual in the theory of piezo- 
electricity ([7], [8]). The strains and stresses are denoted by the symmetrical tensors S~j and 
T ~J, the components of the electric field and electric displacement by El, respectively D ~, the 
components of the mechanical displacement by U ~ and the electric potential by the invariant 

E E zJkl ktJ function V. The tensors S~jk~ and c" represent the elastic coefficients, e " a n d  dk~j the piezo- 
S ~k T tk electric constants and e and e the dielectric constants. The superscripts E, Tand S denote 

that the coefficients are measured respectively at constant electric field, stress or strain. These 
coefficients satisfy the symmetry relations, 

Ecijkl ~ EcJikl ~ Ecklij  ' eki j  ~ ekji  , S~;ik ~- S~ki , (2.5)  

and analogous relations for ~Sijkl, dkij and Tgik. 
We now summarize the transition conditions of electrostatics*). Denoting the tangential 

* These condit ions are usually known as tile boundary  conditions. Since confusion is possible we prefer transi t ion 
conditions. 
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components of the electric field and the normal components of the electric displacement on the 
n(1) and ,~(2) boundaries of the dielectrics (1) and (2) by ~(1) ~-(2) respectively by ~ , )  u(,) we have ~ ( t )  , ~"(t) , 

E(2)  t7o)  0 (2.6.a) (t) ~'(t) : , 

D(2)  _ 13(1) F .  (2.6.b) (n) "-" (n) = 

The unit vector n is normal to the boundary and directed from dielectric (1) into dielectric (2). 
F represents the free charge per unit area on the boundary surface. In (2.6) brackets are used in 
order to indicate that the indices are no tensor indices. 

Finally we discuss the internal energy. When Si2 and D i increase by dS~; respectively dD i, 
the internal energy A per unit volume stored in the body increases with the amount dA, given 
by ([1]), 

dA = T i J d S i j  + E i d D  i , (2.7) 

neglecting contributions which are small of order (dSij) 2 and (dDi) 2. 
We assume that A vanishes whenever the stresses and the electric field vanish. Since dA is a 

perfect differential ([1]), A is independent of the manner in which we arrive at the final state. 
Hence A is given by the expression 

A = (TiJS,j+E,D')2d2 (2.8.a) 
o 

yielding, 

A = I(TiJSij +E, Di). (2.8.b) 

In virtue of the piezoelectric relations, A is a homogeneous quadratic function of six elastic and 
three electric quantities. As usual we assume that A > 0 for compatible, non-zero values of its 
arguments. 

3. Bending of an Infinite Plate by Moments 

An unbounded piezoelectric plate in vacuum is considered, bent by moments at infinity. 
Cartesian coordinates (xl, x2, x3) are chosen with x3 = +_h defining the faces of the plate; h 
is constant. In virtue of the choice of coordinates there is no difference between covariant and 
contravariant indices, hence only subscripts are used. 

The stress distribution in the plate is assumed to be 

T ~ -  3M~ 
2h 3 x3, Tj3  = 0,  (3.1) 

where M,a are the constant bending and twisting moments per unit of length. Also we assume 
the strains, electric field and electric displacement to depend only on x3. Then it follows from 
(2.4) that D3, E1 and E 2 a r e  constant throughout the plate. At the faces x3 = _+ h these quantities 
have to satisfy the transition conditions (2.6). Since no charges are present outside the body 
the external electric field vanishes. Hence we have inside the plate 

D 3  = E1 = E 2  = 0 .  (3.2) 

By substituting (3.1) and (3.2)into the piezoelectric relations (2.1.b), we obtain for the remaining 
mechanical and electrical variables, 

3M~a 
S i j -  2h 3 s*~flx3, (3.3.a) 

3M~t~ * x (3.3.b) 
D r -  2 ~  dm~ 3, 
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E 3 - 3M~pd3~ 
2h 3 TE33 X 3 ,  (3.3.c) 

where 

S~o~fl = Esijct fl d3i jd3cql  
Tg33 , (3.4.a) 

d*~fl = d.;~ B d3~fl Tg73 (3.4.b) 
T/333 

Combining (3.3.a) and (2.3), the geometrical displacements can be evaluated. The formulae 
for the strains are analogous to the ones for an anisotropic elastic plate in a state of pure 
bending, only the coefficients now include the piezoelectric effect. In order to avoid rigid body 
motions we assume at xa = x 2 = x 3 = 0, 

U~ = Uz = U3 = O, (3.5.a) 

U1, 2 -  U2,1 = U3, 2 = 0 .  (3.5.b) 

Then the geometrical displacements become 

U ~ -  3M~a , 
2h 3 s T J a f l x j x 3 '  (3.6.a) 

_ 3M~t~ , 2 
03  - ~ -  (s33aflx3 - s,%c~flx7x6) . (3.6.b) 

From (3.3.a) and (3.6.b) it follows 

Setfl = - -  U3,afl x 3 �9 (3.7) 

The potential V in the plate follows from (3.2) and (3.3.c). Defining V ( x 3  = h)=0, we obtain 

3 M ~ a d 3 ~ a  (h 2 - x3 2) (3.8) 
V -  4h 3 T/;33 

Since all equations are satisfied exactly by the solution given above, this solution is exact. 
Now we suppose that in case of arbitrary bending the stresses, strains, electric field and 

electric displacement do not vary substantially with respect to xa and x2 over distances which 
are of order of the thickness of the plate. This enables us to use locally their distributions over 
the thickness as given by the exact solution of section 3. Hence effects of shear on flexure are 
neglected. 

4. Two-Dimensional Equations for a Plate 

Here the approximate two-dimensional equations for a thin piezoelectric plate in vacuum, 
possessing anisotropy of the most general form and bent by a transverse load, are given. The 
position vector R of a point of the plate will have the form ([5], page 185), 

R = r(O 1, 02) +03a3,  (4.1) 

where 03=0 represents the plane middle surface of the plate; a3 is a constant unit vector 
perpendicular to the middle surface. The faces of the plate are given by 03 = _+ h (fig. 2). 

In virtue of the assumed local distribution of the stresses, the T j3 vanish. Hence the strains 
S j3 can be eliminated from the piezoelectric relations (2.1.a), yielding 

T ~  = ,~p ~ ~ oko~fl r" (4.2.a) ~(1) o~6--~(1) ~t~k, 

D i _ o i ~  4_,ik F (4.2.b) 
- -  ~ ( 1 ) L , y , ~  - - o ( 1 ) - t ~ k  �9 
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(33 

e 1 e2 

Figurc 2. Thc coordinate curves. 

c ~ a  ok~ and i~ represent the elastic, piezoelectric and dielectric constants after elimination (1) , ~(1) 2(1) 

of the S j3. F rom (3.7), 

S~,a = - Wl~,aO 3 , (4.3) 

' by . . . . . . . . . .  vv = (01, 2, u), L.~ . . . . . . . . . . . .  e . . . . . .  Substituting w n e r e  tlcfii-lltlOil "~' Us O m hence .u_ .~.m_~,:_ 'dVllCt.,Ll'On of ,k~ ~ ; A A I ~  ~ 1 ~  

(4.3) and assumption (3.2) into (4.2), we obtain 

T~e . . . .  v( 2)//y6 W[ ~6 03 , (4.4.a) 

0376 
Es = ~(1) W] ~a 03 (4.4.b) 

e~d 

where 

e3C~Po373 
(1) e(1) (4.5) c ff + 

The plate is bent by a transverse mechanical load of the form 

q = q a 3 .  (4.6) 

Then the integrated equations of equilibrium, following from (2.2), read, 

M~[ ~ -  Qp3 = 0 ,  (4.7.a) 
Q~3I~ +q = 0 .  (4.7.b) 

The M ~ a n d  Q~3 are defined by 

M ~ = T ~ 0 3 dO 3 , (4.8.a) 

and 

t 
' h  

Q~3 = T ~3 dO 3 . (4.8.b) 
- h  

Elimination of Q13 and Q23 from (4.7) yields 

M~[~p = - q .  (4.9) 

Combining (4.4.a), (4.8) and (4.9) a fourth order partial differential equation for the deflection 
W is obtained, 

e ~  w l  3q (4.10) (2) r, I~/~ -- 2h 3 �9 

The piezoelectric effect is included in the coefficients c~2ef ~. When the piezoelectric effect is 
neglected, the -~e~a reduce to elastic coefficients and hence (4.10) to the differential equation t~(2) 

for an elastic plate. 
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The electric potential is expressed in derivatives of Wby integrating (4.4.b) with respect to 03, 

V = - 2e~t~ WI ,, (03) 2 + V* (01, 02), (4.11) 

where V* is an arbitrary function. 
The edge conditions which have to be satisfied in order that (4.10) yields a unique solution, 

can be obtained from a consideration of the internal energy. For a plate in equilibrium the 
internal energy per unit of volume is given by (2.8). In virtue of the assumed distribution we 
retain from (2.8), 

2A = T~'S~,. (4.12) 

By integrating (4.12) throughout the plate and using (4.3) and (4.8), the total energy A* is given 
by 

2A* = - 1 MapWl~da' (4.13) 
r 

where da is an area element of the middle plane. 
The internal energy consists only of a mechanical contribution. Hence we have only me- 

chanical boundary conditions. By applying Green's theorem ([5]) and the equations of 
equilibrium (4.7), equation (4.13) transforms into 

2A*= fs ( -M~'WI~ +QP3W)n, d s -  ilQ qWda. (4.14) 

Here s represents the edge of the plate and n, the components of the outward directed normal 
n of unit length on s in the plane of the plate. By means of partial integration and appropriate 
methods ([7], [9]), the known boundary conditions for a plate are obtained. In order to 
formulate these conditions, we introduce also a tangential vector t of unit length to s. 

Denoting the derivatives of Walong n and t by W,, respectively W t ; the bending moment at 
the edge by M(t) and the twisting moment by Mc,); the derivative of Mc, ) with respect to t by 
M(,),t and the shear force at the edge by Q, we arrive at the following theorem. 

When on every part of the edge either M~t ) or W, is given, on those parts where M(,), t exists 
either Q + M  (n),t or W and at the remaining points W or the discontinuity in M~,), the solution 
of the plate equation is unique. 

The derivations given in this section, remain valid when an uncharged electrode is present in 
an equipotential plane. Since every plane parallel to the faces is such a plane, the equations 
given above can also be applied to region II of an incomplete bimorph (fig. 1), since we assumed 
that the charge vanishes on the part of the central electrode situated in the mentioned region. 
Assuming that the potential on the central electrode vanishes, the function V ~, introduced in 
(4.11) vanishes in this case 

5. Bending of an Unbounded, Complete Bimorph by Moments and Charges 

An infinitely extended, complete bimorph is referred to Cartesian coordinates (xl, x2, X3) with 
x3 = + h defining the outermost faces. The bimorph is deformed by moments, which are uniform- 
ly distributed along the "edges" at infinity and by the action of electrical charges on the electrodes. 
The charge per unit area on the central electrode has a constant value 2F. The values of the 
charges on the outermost electrodes are not important since they do not affect the solution 
inside the plate but only the external electric field. In the remainder we assume that the sum of 
the charges on the outermost electrodes has the opposite value of the charge on the central 
electrode. Hence, because they are shorted, the charge per unit area on an outermost electrode 
equals - F .  We assume that the stresses, strains, electric field and electric displacement are 
independent of x 1 and x2. 

When the central electrode is free of charges, the solution for this problem is given in section 3. 
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In presence of charges additional oppositely directed, constant electric fields are generated in 
the plates. From (2.4) and the transition conditions (2.6) we find 

D3 = D3 ~c) sign x3, (5.1) 

where 

D3(C) = F .  (5.2) 

In virtue of (2.4.a) and the presence of electrodes, E1 and E2 vanish. For the distribution of the 
remaining electrical components we assume, adding constant terms to (3.3), 

E 3 = E~ ) sign x3 +E(31)x3, (5.3.a) 

D~ = D(f sign x3 +D~l)x3 �9 (5.3.b) 

Note that the quantities with superscript (c) and superscript (1) have different dimensions. 
A number of components of the stress and strain tensor will also include a sign x3 function 

and exhibit a jump at x3 = 0. Since Tj3 and Uj (and hence S,r have to be continuous across the 
middle plane, discontinuities are only allowed to occur in T~ and S j3. Hence we assume 

T~ = T~(~ ) sign x3+ Z~(~)x3, r j3 --'- 0 ,  (5.4.a) 

S~  = o~p'~tl)x3, Sj3 = S (c).i3 sign x3 +S~)x3 �9 (5.4.b) 

When we substitute the terms containing variables with a superscript (c) into (2.1.a) and 
eliminate S(f)3 we arrive at the following system of equations, 

T~)= _ 0(1)F(c) (5.5.a) r~3ctB ~ 3  , 

D~ c) = oi3~ , (5.5.b) 

where e(3t~) e and oia~ have the same meaning as in expression (4.2), section 4. 
In virtue of (5.4.a) the moments M~ become 

M~o = h z T~(t? +-~h 3 T~(r ) . (5.6) 

By means of (5.1), (5.2)and (5.5) T~(~ ) can be expressed in F. Then we derive from (5.6), 

3M;*~ (5.7) 
T~(~ ) - 2h ~ , 

where 
(1) 

e~7~ h~ F (5.8) M~ = m~,t~ + e ( 1 )  - -  - - ,  

~ 

Hence, applying the analysis of section 3 to the coefficients with superscript (1) we find, 

S(1) 3M~ (5.9.a) 
ij ~- ~ Sijctfl " 

From (2.1.b), (5.1), (5.2) and (5.5) we derive 

d ~ ,(1) 3 j 3 - -  ~ F .  (5.9.b) 
S(f ) : (1) 

/333 

Assuming that the conditions of definiteness (3.5) are satisfied, the mechanical displacements 
become, 

K~(1)N'X -}-2S~,31x3l(C) (5.10.a) g ? =  ~TJ J 3 

U3_ 1 tr (1) (5.10.b) 
- Ix l. 
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We conclude from (5.4.b) and (5.10.b) that 

S~t ~ = - Ua,~,ax3 , (5.11) 

analogously to (3.7). The linear equations of piezoelectricity are satisfied exactly by the above- 
stated solution. 

The potential difference Vo= V ( - h ) - V ( O )  follows from (5.1), (5.2), (5.5), (5.7) and (3.3), 

3 d3~ ~ h 
V 0 --  4hT~33 M * a -  -(3~3) F .  (5.12) 

For arbitrary bending of thin bimorphs, we assume that for the local distribution of the stresses, 
strains, electric field and electric displacement along the thickness, the distributions given by 
the exact solution for the unbounded bimorph may be used. 

6.  Approximate Equations for a Complete Bimorph, Conclusions 

The bimorph is referred to the plate coordinates introduced in section 4. The plane 03=0 
coincides with the central electrode. The exterior faces are given by 03 = _+ h. The bimorph is 
deformed by a transverse load of the form (4.6) and by electric charges on the electrodes. The 
potential difference between the central electrode and the shorted exterior ones is denoted by 
V o = V( _+h)- V(0) and the total charge on the central electrode by 2F*. Then each outermost 
electrode has a charge - F * .  We assume that either V o or F* is given. 

We write for the distributions of T ~'p, S~p, E 3 and D ~, according to the exact solution of 
section 5, 

T ~p = 7~) ~ sign 0 3 +T~]~) 0 a , (6.1.a) 

S~ : - W[~ 03 , (6.1.b) 

E 3 = E(3 c) sign 03 +E(31)O 3 , (6.1.c) 

D ~ = D(~) sign 03 + D ~ I ) 0  3 , (6.1.d) 

0 3 = D~,,) sign 03 , (6.1.e) 

where again W =  g3(01,  0 2, 0). The bending and twisting moments become 

M ~  = h2 {T(~) p + ~h T(]~} (6.2) 

and have to satisfy (4.9). 
When we substitute (6.1) into (2.1.a) the following systems of equations are obtained, taking 

into account that T j3 and E~ vanish, 

T(~c) ~ = - -  e3~ 3 , (6.3.a) 

Olc) ~,i3 ~ c )  (6.3.b) ~(1).~3 , 

T(]~ = - c~'f~ ~ W[,o- e~) ~ E(3 t) , (6.4.a) 

D~I) ,,~owI ~_ ~3 F(1) (6.4.b) ~--- - - c . ( 1 ) , , ~ 7 6 ~ ( 1 ) ~  3 , 

e~[)~ WI~ (6.4.c) 

The coefficients c~f) ~, j~a i3 e(a) and e(~) are already introduced in section 4. 
Since the potential difference between the electrodes in the planes 03= ___h and 03= 0 is 

denoted by V o, combination of (2.4.a) and (6.4.c) yields 

h e~ f f  
E~ ) =  - / ~  -~176 + ~  W,,~}. (6.5) 
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By substituting (6.4.c) and (6.5) into (6.4.a) and (6.3.a) the stresses T ~ can be expressed in Vo and 
derivatives of W, 

T(:] = e~f  + 2 ~-~ WI,a , (6.6.a) 

T( ]q  = _ c~l//;d3 _~_ ~(1)~(1) WI,3 " ( 6 . 6 . b )  

Hence the moments M ~a become, 

M=a e{~ft, v 2 L,3 ~fl73 lJ/t (6.7) = , ~ , 0 - - ~ , ~  u(3 ) ~ r l ? 6 ,  

where 
o3afl 03yb 

z,~fl'ga r~(1) ~(1) (6.8) 
~(3) = c~'r a + 4e~d 

Substitution of (6.7) into (4.9) yields the following fourth order differential equation in W, 

c~,~ ta/I 3q (6.9) 
(3) ,, I~o -- 2h 3 �9 

Our problem is reduced to solving (6.9), under the constraints of appropriate boundary 
conditions. 

These conditions can be derived again from a consideration of the internal energy. For a 
bimorph in equilibrium we obtain within the accuracy of the theory for the energy stored in 
the plate, 

2A = 2 (T~:) ~ + T(C~q 03) W I ~fl 03 + ( E ~  ") +E(1 )03 )  D~c)} dO 3 dff (6.10) 
o o 

When w.e carry out the integration with respect to 03 and apply (6.2), (6.4.c) and (6.5), this 
expression is transformed into 

( 2A = - 1 M~a W[~a d a -  2F* V o . (6.11) 

The first term in the right hand side can be treated like (4.13). Since we assumed that V o or F* 
is given, it is obvious that we arrive at the conditions of the theorem given in section 4. 

Finally we give a relation between the total charge on the electrodes, the potential difference 
and the deflection. By integrating (6.3.b) over the middle plane with total area o and applying 
(6.5) we obtain 

F* + ~ -  Vo + ~ .. eMWL,~do = O. (6.12) 

When (6.9) is solved and V o is prescribed, F* follows from (6.12). Inversely, when F* is given, 
Vo follows from this equation. 

Now region I of an incomplete bimorph (fig. 1) can be described by the approximate equations 
for a bimorph, given in this section and region II by the equations for a plate (section 4). The 
two-dimensional theory for incomplete bimorphs is completed by giving the usual conditions 
of continuity on the common boundary of the regions I and II and the edge conditions. The 
latter ones are stated in the theorem given in section 4, while at the common boundary the 
quantities mentioned in this theorem must be continuous. 

By means of the theory presented, thin incomplete bimorphs which are statically deformed 
can be treated and hence also quasistatic problems. 
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7. Bending of a Circular, Incomplete, Piezoeeramic Bimorph by a Concentrated Load; Experi- 
mental Data 

In this section the approximate theory stated above, is applied to a circular, incomplete, piezo- 
ceramic bimorph, polarized perpendicular to the faces. The bimorph is described by cylindrical 
coordinates (r, (p, z), with the z-axis along the axis of rotatory symmetry. The central electrode 
is given by z = 0 and the outer faces by z-- _+ h. The latter ones are partly covered by electrodes, 
occupying the region 0_< r_< a. The edge of the bimorph is given by r=b.  The bimorph is 
simply supported along its edge and loaded by a concentrated force P acting along the positive 
z-axis (fig. 3). The potential difference V o between the inner electrode and the exterior ones is 
obtained as a function ofa/b in case the outer electrodes are insulated from the central one and 
compared with experimental data. 

I 
b 

Figure 3. Cross section of the circular bimorph, loaded by a concentrated force. 

With respect to Cartesian coordinates (xl, x2, x3) with the x3-axis along the direction of 
polarization, the elastic, piezoelectric and dielectric constants for a piezoceramic may con- 
veniently be represented in the following tables ([1]), 

ESl111 ESlt22 ESl133 

ESll l l  ESl133 

ES3333 

0 0 0 

0 0 0 

0 0 0 

ES1313 0 0 

ES1313 0 

ES1212 

0 d l l  3 0 

d113 0 0 

0 0 0 

0 0 0 

0 0 0 

dall  d311 d333 

Tell 0 0 

T~11 0 

T~33 

where E i iE S12~z----~t Sll~l--eSl122). Since we neglected Tj3, j =  t, 2, 3, and E~, a =  1, 2, we retain 
from (2.1) with respect to (xl, x2, Xa), 

Y 
T 1' - {Sll +vS22-(1 +v)d3alE3} (7.1.a) 1 -- V 2 

Y 
r 22 - l_v2  {$22 + v S l l - ( 1  +v)d31~E3}, (7.1.b) 
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Yd311 (Sll -~-$22 ) -~-T~33 /~1 -- 2k, ~ E3 (7.1.c) D 3 
1 - v 1 - v /  " 

Here  Y represents the Young's  modulus  for tension/compress ion parallel to the plane of the 
plate, Y= (Es 111 a)- 1, and v Poisson's ratio, v = - Y~S1122. The constant  kt is the square of an 
electromechanical  coupling factor ([1]), 

Y(d311)2 (7 .2)  
k l  - T~33 

From (4.2) and (7.1) we conclude that with respect to Cartesian coordinates,  

Y c~1~) ~ = c{~ 22 - (7.3.a) 
l _ v  2 ' 

Yv 
c~)) 22 - (7.3.b) 

I__V 2 '  

e311 = e~1~2 _ Ydal_i (7.3.c) 
(1)  1 - v ' 

22~ = ; ~  (1 2 k l  
i - - ~ / "  (7.3.d) 

Hence the coefficients c(l~ i 1, c{~22 and c~2~ 22, defined by (4.5), become 

4 2 1  = cs _ Y0 +k2) 
1 -  v 2 ' (7.4.a) 

c~1)22 _ Y(v +k2) 
1 - v  2 ' (7.4.b) 

and c~3~) ~l, c ~  22, c1122(3) , given in (6.8), 

c g  11 = c~) 22 - (7.5.a) 
I__V 2 

C~)) 22 - -  
1 __y2 (7.5.b) 

The constant  k 2 is related to v and kl by 

kl (1 +v) 
k 2 -  1 - v -  2kl " (7.6) 

Indicating the elastic, piezoelectric and dielectric coefficients with respect to r, (p and z by  
a bar, we obtain 

~lill ^iiii =1122 . - 2  ~i122 =2222 . -4 ^ilit (7.7.a) 
(m) = C ( m  ) , C(m ) = r  c(m ) , C(m ) = r c(m ) , 

~ = e~i~) 1, ~ ) 2 =  r-  2 e~)1, ~ l ] = r - 2 2 ~ ,  (7.7.b) 

where m is 2 or 3. Since in the coordinates (r, cp, z) 

Wl.  = w11, wi22 = rW~, (7.8) 
the moments  M 1~ and r 2 M 22 for region II become,  using (4.4), (4.8), (7.4) and (7.8), 
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2h 3 Y 
M 11 - 3(1_v2){(1 +k2)W, la +(v+kz)r -1 Wa} (7.9.a) 

2h 3 Y 
rZM 22 - 3(1_v2 ) {(v +kz)W,,~ +(1 +k2)r -1 W,1). (7.9.b) 

Similarly we have in region I 

M ~1 Yd31*hV~ 2h3y { ( ~ )  (v ~ ) r - l W ) }  (7.10.a) 
= - - 1 - v  3(1_v2 ) 1 + Wll + + 

rZM2z-Yd311hV~ 3(1_v2 )2h3Y {(v k2) (1 k2) + ~ -  W,~ 1 + + r 1W,1. (7.10.b) 

The equation of equilibrium for both regions follows from (4.7) and reads, 

P 11 M l l - - r M  22 -- . (7.11) M ,1 +r-  1 2~r 

Substitution of (7.9), respectively (7.10) into (7.11) yields 

P 
Wll l  q_?,-1 W11 _ r -2  W, 1 _ 27rrK (7.12) 

for region II and 

P 
W l l l  +r -~ W l a - r  -2W1 -- 27zrK* (7.13) 

for region I. The constants K and K* are given by 

2h 3 Y(1 +k2) 
K - (7.14.a) 

3 ( 1 - v  2) ' 

K* = (7.14.b) 
3(1-v  2) 

The equations (7.12) and (7.13) have the general solution ([ 10]), 
pb 2 

W = ~ {(r') z log r' +Ci(r') 2 +C 2 log r' +C3}, (7.15) 

respectively 

pb2 , 2 r' r' W =  8~K#{(r) log +C'~(r') 2 +C~ log +C*}, (7.16) 

where r '= r/b. The constants C1 ... C~ and the potential difference V0 are obtained from the 
conditions that M 11 and W vanish for r '= 1, that M 11, W and W 1 are continuous for r '=  a/b, 
that Wis bounded for r '=0 and from the equation 

-haYd311 
Vo = re33(l_v_2k1)W1 ( r = a ) ,  (7.17) 

which is derived from (6.12). Elimination of C1 ... C~ from these conditions and from (7.17) 
yields 

Ydzl lh2p ( - l og  a -t 1 +k2 "~ (7.18) 
V0 = 47~K r~3(l~v---2kl) b 1 q - v ~ k 2 J "  
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Figure 4. Experimental values and theoretical curve ~ r  V 0. 

This result is checked experimently. A detailed description of the experiment is given in [11]. 
In fig. 4 the measured value of the potential difference Vo for a number of values of a/b is 
plotted. Since the .coefficients of the material and the applied load were not known exactly, 
some suitable measurements are used for determining the coefficient of the logarithmic function 
and the constant in (7.18). By applying these values, the theoretical curve (7.18) is plotted. The 
remaining measured values are in good agreement with the theory. 
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